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ANALYSIS OF SOLI DlFlCATlON IN THERMAL-ENERGY STORAGE SYSTEMS 

WITH AXISYMMETRIC HEAT-TRANSFER SOLUTIONS 

by Richard R. Cullom, George Diedrich, and Lynn U. Albers 

Lewis Research Center 

SUMMARY 

An analysis was made of a transient heat conduction problem with a phase change in 
the axisymmetric conducting medium and heat transfer at the inner radius only. Non- 
dimensional finite-difference solutions for surface temperature and solidification thick- 
ness were obtained fo r  a range of time, initial heat-rejection rate, tube diameter, and 
storage-material properties. Although the configuration of a tube submerged in a 
thermal-energy storage material which is at its fusion temperature applies to space 
auxiliary-power systems, the nondimensional solutions presented in this report can be 
applied to a wide range of axisymmetric solidification problems, such as metal casting 
and ice formation. 

To illustrate their application, the general solutions were used in an analysis of a 
lithium hydride thermal-energy storage system. Analysis indicates that the use of axi- 
symmetric solutions are recommended over the simple one-dimensional solutions for low 
radii o r  long dark times to prevent inefficient overdesign of the thermal-energy storage 
component. The storage-material surface temperature is more sensitive to changes in 
heat-rejection rate than to changes in either cooling time o r  heat-transfer surface radius. 
The solidification thickness is a stronger function of cooling time than either heat-transfer 
rate o r  surface radius. 

INTRODUCTION 

The solar Rankine and Brayton cycle engines are being considered as possible power 
sources for  space missions. Providing energy to the conversion device while the satellite 
is in the eclipsed, or  dark portion of its orbit, is a problem common to these solar- 
energized orbiting auxiliary-power systems. A method of providing power for the dura- 
tion of the orbital dark time is to store the solar thermal energy as the latent heat of fu- 
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sion of a suitable material. A component common to the solar thermal-energy storage 
systems is the cavity-absorber, which receives and transfers the incident radiant ther- 
mal f lux into the conversion system. The cavity-absorber usually contains thermal- 
energy storage material between the cavity wall and the heat-transfer loop which conveys 
the absorbed thermal energy to the conversion system. In orbit this storage material is 
melted by solar radiation. It then supplies thermal energy, theoretically equal to its la- 
tent heat of fusion, to the energy-conversion system during periods when the solar collec- 
tor is shadowed from the Sun. Thermal-energy storage is attractive in auxiliary systems 
because the relatively high specific storage capability minimizes the overall weight of the 
power system. In addition, the basic simplicity of the concept is expected to result in 
high reliability and long life. 

Solutions to the transient heat-transfer process that occurs during the extraction of 
heat from a melted storage material wil l  aid greatly in the design and estimation of per- 
formance of thermal-storage systems. Solutions for transient heat conduction for various 
boundary conditions with a change of phase of the one-dimensional conducting medium have 
been developed (refs. 1 to 3). These one-dimensional solutions can be applied to problems 
involving metal casting and ice formation and to axisymmetric storage systems in which 
solidification thickness is small relative to the tube diameter. To aid in the design and 
evaluation of a greater range of tube-type thermal-energy storage systems and to solve 
general axisymmetric solidification problems, this report presents the difference solu- 
tions fo r  transient heat conduction with a phase change in the axisymmetric conducting 
medium. Nondimensional solutions for the surface temperature and solidification thick- 
ness of storage material were obtained for a range of time, initial heat-rejection rate, 
tube diameter, and storage-material properties. Although this study was motivated by 
the space application of thermal-energy storage, the solutions presented herein can be 
applied to many axisymmetric problems, such as metal casting and ice formation. 

ANALY SI S 

The thermal-energy storage model considered herein is an axisymmetric, time- 
variant, heat-conduction system with a change in state of the conducting medium (fig. 1). 
The thermal-storage material is assumed to be semi-infinite. The thermal energy sup- 
plied by the conversion of its latent heat of fusion at the solid-liquid interface causes the 
surrounding liquid to freeze. The thermal energy is then conducted through the solidified 
phase and convected to the heat-transfer fluid at the inner radius surface. The storage 
material properties a r e  assumed to be invariant with temperature. With these assump- 
tions, the transient heat-conduction equation is 
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, interface 
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Figure 1. - Thermal-energy-storage model during heat-transfer process. 

(Symbols are defined in the appendix. 

c) for ro < r  <ro  + 2 
ar 

The boundary conditions for  the thermal-storage 
model shown in figure 1 are established as follows. Initially, the complete volume of the 
heat-storage material is assumed to be in the liquid phase and at the fusion temperature: 

As thermal energy is extracted from the storage material, the surface temperature 
drops below the fusion temperature, and the liquid phase is solidified. This phase is as- 
sumed to be stagnant but continually in intimate contact with the solid-liquid interface. 
The interface moves in the positive r-direction; at the interface the temperature is equal 
to the fusion temperature: 

T = Tf at r = r o + l  

In a heat balance at the solid-liquid interface, the rate at which the heat of fusion is 
liberated by the solidifying material is equal to the rate at which heat is transferred from 
the interface into the solidified phase: 
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p f - = k -  dl aT at r = r o + l  
dt ar 

t 

b 

A heat balance at the inner radius surface of the storage material equates the convec- 
tive heat transfer to the fluid with the rate at which heat is conducted toward the surface 
of the solidified material: 

rO at r =  h(T - Tb) = k- aT 
ar 

In this equation h is the overall heat-transfer coefficient and includes the tube-wall re- 
sistance as well as the surface resistance to heat transfer.  However, when t = 0 and 
T = Tf, then h(Tf - Tb) is defined as the initial heat-rejection rate. 

following dimensionless parameters: 
Equation (1) may be nondimensionalized by expressing the variables in t e rms  of the 

h2at 
T = -  

k2 

hr  R = -  
k 

hl L = -  
k 

The resulting form of the heat-condition equation is 

(3) 

Equation (7) involves the dependent temperature-related variable cp and the two in- 
dependent variables, the time-related variable T and the space-related variable R. The 
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subscripts denote partial differentiation. The equation is to be satisfied at all points 
(R, T )  interior to the region Ro < R < Ro + L(T)  and T > 0. The function L(T)  is related 
to the thickness of the solidified layer, which increases with time. 

The boundary conditions are 

cp(R,O) = 1 for  R > R o  (8) 

The first boundary condition, equation (8), states that initially the storage material is 
uniformly at the temperature of fusion. The second boundary condition describes how 
heat is withdrawn through the interior surface of the solid layer to the heat-transfer fluid. 
The third condition shows that the solid-liquid interface is always at the fusion tempera- 
ture. The fourth condition states that the rate of growth of the layer thickness L is di- 
rectly proportional to the temperature gradient at the solid-liquid interface and inversely 
proportional to a parameter F, which is related to the heat of fusion. 

Solution of Heat-Conduction Equation 

The heat-conduction equations were solved by finite-difference methods for  a variety 
of parameter pairs Ro and F. Some cases were solved by an explicit method, but ex- 
cessive computing t imes for  cases with small values of Ro made it worthwhile to convert 
to the Crank-Nicholson method (ref. 4), which is implicit. The methods are described in 
the next two sections. 

calculated at the time 7 .  This leads to explicit equations for  the new cp's of the follow- 
ing forms.  The equation at all interior points is 

Explicit method. - In the integration from 7 to T + AT, the space derivatives are 

where 
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A 1 = P - -  Y 
R 

A2 = 1 - 2@ 

A 3 = P + -  Y 
R 

AT y=- 
2 AR 

and the equation at the R = Ro boundary is 

d R 0 ,  + AT) = B1cp(Ro + AR, 7 + A T )  + B2cp(Ro + 2 AR, T + AT) 

where 

4 
B1= 3 + 2 AR 

-1 
B2 = 3 + 2 AR 

The latter arises from using a three-point Lagrangian derivative in the second boundary 
condition (eq. (9)). The new L value and the new cp value at the position R = Ro+ L(T) 
a re  determined iteratively by use of the finite-difference analog of the fourth boundary 
condition. It is well  known that this explicit process is unstable if the coefficient A2 in 
equation (12) is negative; that is, unless AT is chosen to be less  than (AR) /2, the so- 
called safe step size for T .  This instability makes the explicit method time consuming 
for cases with small interior radius. 

To minimize the truncation e r ro r  caused by the one-sided character of the T deriva- 
tive, the explicit method was modified in the following manner. If the kth approximation 
to cp(R, T + AT) is denoted by cpk(R) and the R derivatives are calculated about T +  AT/& 

the iteration equation is obtained as 

2 
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where 

*3 D2 = - 
2 

This modification was unsuccessful in allowing use of a larger time step which would 
reduce computing time. Therefore, the modified explicit method was employed only in 
starting the implicit solutions, that is, until the growth of L(T) began. However, certain 
test cases were completely integrated by using the modified explicit method. 

Implicit method. - In the Crank-Nicolson method (ref. 4), the R derivative as well 
as the T derivative is calculated about T +  AT/^. This leads to the basic implicit equa- 
tion 

-D1q(R - AR, T + AT) + (1 + P)q(R, T + AT) - D2q(R + AR, T + AT) 

This equation, together with the consequent of the second boundary condition, 

(1 + AR)q(Ro, T + AT) - q(R0 + AR, T + AT) = 0 (16) 

reduces the integration process f rom T to T/AT to the solution of a single matrix equa- 
tion with a tridiagonal coefficient matrix. The matrix is factored into triangular factors, 
and the solution is carried out by the usual forward and backward substitution processes. 
No iteration is involved. 

Crank-Nicolson method is known to be stable. When results were compared to those ob- 
tained for the slower explicit method, it was found that a AT of 20 t imes the safe step 
was usable with no appreciable degradation in accuracy. Even allowing for  the greater 
complexity of the implicit process, an overall speed gain of 10 to 1 was  achieved. 

Because the coefficient 1 + P in equation (15) is positive for  all steps in AT, the 
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Program Running Procedures 
L 

Input data cards were used to specify the two parameters, dimensionless radius Ro, 
which ranged from 0.01 to 100, and dimensionless heat of fusion F, which ranged from 
0.1 to 25, as well  as the starting thickness L. In general, L(0) was chosen as the 
smaller of the two numbers, either 0.001 Ro o r  0.001, and AR was always L/20. 
Values of dimensionless temperature cp(Ro, T )  and solidification thickness L(T) were ob- 
tained at dimensionless time steps of 0 .1  for loglOT from -4 .0 to 3.0. At the comple- 
tion of each specific case, profiles of these two functions were plotted for  immediate pe- 
rusal by using a plotting subroutine. Computational t imes ran from fractions of a minute 
to 30 minutes. 

RESULTS AND DISCUSSION 

General  Solutions 

The difference solutions are presented in the form of nondimensionalized curves SO 

that these results can be applied over a range of operating conditions, tube geometry, 
and material properties. In figure 2, the dimensionless temperature cp of the inner ra- 
dius surface through which the heat was removed from the storage material is plotted 
against the dimensionless time T for a range of dimensionless heats of fusion F. These 
surface-temperature - time plots are presented for  various values of Ro, which is the 
nondimensional radius of the heat-transfer surface, In figure 3, the dimensionless thick- 
ness of solidification L of the storage material is plotted against the dimensionless 
time T for several values of dimensionless heat of fusion and dimensionless radius. 

Utilization of figures 2 and 3 necessitates the choice of a storage material along with 
the knowledge of the material fusion temperature, heat of fusion, thermal conductivity, 
density, and specific heat. In addition, the cooling o r  dark time, the overall heat- 
transfer coefficient, and the heat-transfer surface radius must be specified. To obtain 
the storage-material surface temperature at the end of a specified dark time, the time T 

must be calculated from the orbit dark time, the overall heat-transfer coefficient, and 
the material properties. The heat of fusion F is then calculated from the thermal prop- 
erties of the heat-storage material and the local bulk temperature. The radius Ro is 
calculated from the inner radius, the overall heat-transfer coefficient, and the thermal 
conductivity. The value of radius Ro calculated from these quantities probably will not 
correspond to the values of the plots presented in this report; therefore, interpolation 
may be necessary. When the values of dimensionless t ime and heat of fusion are known, 
the proper Ro plot may be entered and the temperature cp obtained. The absolute sur- 
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(b) Dimensionless radius. 0.1. 

" . o001 .001 . 01 . 1  1 10 100 lo00 
Dimensionless time, T = h2atlk2 

(c) Dimensionless radius, 1.0. 

Figure 2. - Time-temperature relations for various dimensionless heats of fusion. 
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Figure 2. - Concluded. 
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Dimensionless iime, T = h h k 2  

(a) Dimensionless radius, 0.01. 

Figure 3. - Time - solidification-thickness relations for various dimensionless heats of fusion. 
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. m1 
Dimensionless time, T = hLdlkL 

(d) Dimensionless radius, 10.0. 

Figure 3. - Continued. 
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Dimensionless time, T = h2at/k2 

(e) Dimensionless radius, 100.0. 

Figure 3. - Concluded. 
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I face temperature at the end of the specified cooling time is then obtained from the defiqi- 
tion of q and from the material fusion and fluid bulk temperatures. The solutions for  
dimensionless thickness of solidification (fig. 3) are obtained in a similar manner and are 
dimensionalized with the proper parameters. The nondimensional solutions presented in 
this report can be applied to a wide range of axisymmetric solidification problems, such 
as metal casting and ice formation. 

mensionless temperature with dimensionless time for several values of radius at a given 
value of heat of fusion is shown in figure 4. For low values of time the surface- 
temperature ratio remains relatively high and does not vary appreciably with radius o r  
from axisymmetric to one-dimensional solutions (ref. 1). . As the time increases, varia- 
tion of the temperature ratio with radius becomes significant. At a given time and fo r  a 
given initial heat-rejection rate the configuration with a low value of inner surface radius 
exhibits a higher temperature ratio. This effect occurs because the ratio of frozen stor- 
age material volume to heat-transfer surface area is higher for  the low values of dimen- 
sionless radius and the result is a lower solidification thickness and therefore a lower 
temperature drop from the fusion interface to the inner radius surface. As the value of 
radius increases, the surface temperature ratio decreases, until at a value of dimension- 
less radius of 100 the axisymmetric and the one-dimensional geometries are similar and 
the solutions correspond. The slight divergence of the comparable axisymmetric and 
one-dimensional cases can be attributed to the differing methods of solution and to cumu- 
lative e r ror .  It is observed that, for  longer dark t imes and for  values of dimensionless 
radius less  than approximately 100, the one-dimensional solutions fail to depict accur- 

I 

Comparison of axisymmetric and one-dimensional solutions. - The variation of di- 

I 

l ately the true temperature history, and therefore the axisymmetric solutions should be 
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Figure 4. - Comparison of axisymmetric time-temperature relations for various dimensionless radii 
with one-dimensional relations. Dimensionless heat of fusion, 1.0. 
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Dimensionless time, T = hzat/kz 

Figure 5. - Comparison of axisymmetric time - solidification-thickness relations 
for various dimensionless radii with one-dimensional relations. Dimension- 
less heat of fusion, 1.0. 
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used in these cases. These comments are also relevant to  figure 5, which compares tpe 
solidification thickness for  several axisymmetric cases with a one-dimensional solution. 
Thus, utilization of one-dimensional solutions for  low radii can result in an inefficient 
overdesign of the thermal-energy-storage system. 

cooling time, and heat-transfer surface radius and the dependent parameters, surface 
temperature and solidification thickness, can be qualitatively established from figures 4 
and 5. It is assumed that the heat-rejection rate can be expressed as q = h(T - Tb) f o r  
a constant bulk temperature. Then from equation (3) in the section ANALYSIS it can be 
observed that the dimensionless time parameter increases with the second power of the 
heat-transfer coefficient. In addition, an increase in the heat-transfer coefficient in- 
creases  the dimensionless radius parameter linearly. The combined effect of an increase 
in these two parameters, due to an increase in the heat-transfer rate, is an augmented 
drop in the surface temperature ratio. The cooling time and the surface radius affect 
their respective dimensionless parameters linearly. Therefore, for the cases  consid- 
ered here the surface temperature is more sensitive to changes in heat-rejection rate 
than to changes in either cooling time or heat-transfer surface radius. 

The dimensionless solidification thickness shown in figure 5 increases at a given 
time as the dimensionless radius increases. The low value of radius exhibits a lower 
solidification thickness because the ratio of frozen storage material volume to heat- 
transfer surface area is higher for low values of radius. Thus, a low radius configura- 
tion can provide the same initial thermal energy flux with a lower solidification thickness 
because of the axisymmetric geometry. As the dimensionless radius increases, the axi- 
symmetric solutions approach the one-dimensional solution of reference l. The differ- 
ence between the solutions diminishes at the lower values of time. An analysis similar 
to that made for  figure 4 shows that over the range of parameters studied the solidifica- 
tion thickness is most sensitive to changes in cooling time. 

Analysis of parametric relations. - The relation between the heat -rejection rate, 

System Analysis 

The general solutions of figures 2 and 3 are used to analyze the performance of a 
family of cavity-absorbers in t e rms  of surface temperature and solidification thickness. 
The cavity-absorber component of a space auxiliary-power system receives the incident 
solar radiation during the sunlit portion of the orbit. The absorbed solar radiation melts 
the thermal-energy-storage material contained between the cavity wall and the tube wall 
of the loop. This melting transfers heat to the energy-conversion device. When the 
solar collector of the space vehicle is not receiving radiation f rom the Sun, the storage 
material will solidify and thereby provide thermal energy f rom its heat of fusion to the 
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I . 
energy-conversion system. 

of a family of storage systems using lithium hydride storage material are investigated in 
figure 6. Lithium hydride properties listed in table I were obtained from references 5 
and 6. A dark time o r  total cooling time of 35 minutes was specified. Solutions were 

radii. An infinite tube wall conductivity and a constant bulk temperature were assumed 
for  the results presented in figure 6. This design approach can be referred to as the 

I ' Axially constant heat-f lux thermal-storage system. - The thermal characteristics 

I obtained by using figure 2 for a range of initial heat-rejection rates and for three tube 
I 

1715 Fusion temperature, T ~ ,  OR 

Heat of fusion, f, Btu/lb 
Thermal conductivity, k, Btu/(hr)(ft)(OR) 2.4 
Density, p,  lb/ft3 43 
Specific heat, c P' Btu/(lb)('R) 1.9 

1251 

L f 
L 
3 
v) 

then applied along the length of the heat- 
transfer tube. This solution is a good ap- 
proximation when the total enthalpy r i se  of 
the heat-transfer fluid is not excessive and 

In i t ia l  heat-rejection rate, qi, Btul(in?)(sec) 

Figure 6. - Li th ium hydride storage-material surface temperature as funct ion of in i t ia l  
heat-rejection rate for various radii. Dark time, 35 minutes. 
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end of the 35-minute dark time is 1500' R, the maximum initial heat-rejection rate 
available from a storage system with 1/8-inch-radius tubes is 0.058 Btu per square inch 
per second. The storage system must then be designed within this heat flux limit but 
with sufficient tube heat-transfer surface area to provide the required enthalpy rise to 
the heat-transfer medium during the dark period of the orbit. In addition, the heat- 
transfer surface a rea  must be increased because the heat-rejection rate is not constant 
over the dark period. If the heat flux is characterized by q = h AT, then, for  a constant 
heat-transfer coefficient, the heat flux at the end of the dark time will be the initial rate 
corrected by the ratio of the final to the initial temperature difference. In this example 
the final heat flux will  be  0.043 Btu per square inch per  second. Therefore, to supply the 
total thermal energy required during the dark time, the surface area, and hence the tube 
length, must be increased by approximately 35 percent to compensate for  this decrease 
in heat-transfer rate. 

For  a given dark time, figure 6 indicates that a tube radius which provides a high 
ratio of storage-material volume to tube surface area most efficiently utilizes the storage 
material. However, this factor is limited, depending on the heat-transfer medium flow- 
ing in the tube, because the pressure drop may become appreciable as the tube radius is 
decreased. From a system-weight standpoint the optimum tube configuration will also be 
affected by the ratio of the tube wall  material density to the storage material density. 

The solidification depths for the family of lithium hydride thermal-energy systems de- 
scribed previously are presented in figure 7. Solidification thicknesses were obtained by 
using figure 3 fo r  a range of initial heat-rejection rates. The thicknesses increased as 
the heat flux and the tube radius increased. For  the example of a system with 1/8-inch- 

To complete a design study, a knowledge of the solidification thickness is required. 

1 
Initial heat-rejection rate, qi, Btu/lin. ')(sed 

Figure 7. - Lithium hydride storage-material solidification thickness as function of initial 
heat-rejection rate for various radii. Dark time, 35 minutes. 



radius tubes, at a heat flux of 0.058 Btu per square inch per second. The solidification 
thikkness is approximately 0.80 inch. The heat-transfer surface area and therefore the 
total tube length are obtained from the required enthalpy rise of the heat-transfer medium. 
With the total tube length and the solidification depth, the volume and weight of the 
thermal-energy storage material can be calculated. 

tem requirements specify a relatively high total enthalpy rise or  a high heat-rejection 

tion may be desired to analyze the system because of the axially variable system param- 
eters which control the heat-transfer process. A s  the heat-transfer medium flows down 
the tube, its bulk temperature is raised by heat addition from the tube wall. To supply 
the thermal energy, the heat-storage material solidifies and causes the outer radius wall 
temperature to decrease so that the wall  temperature varies along the tube in the axial 
direction. Therefore, the sink temperature and the source temperature vary along the 
tube axis. 

The axisymmetric solutions of figure 2 were applied to the axially variable heat-flux 
case by dividing the tube into finite axial increments and assuming properties and param- 
eters as constant over these small increments. As an example, a system composed of 
lithium hydride storage material, mercury heat-transfer fluid, and a stainless steel tube 
with an outer radius of 1/8 inch and a wall thickness of 0.030 inch was  considered. The 
liquid mercury was  assumed to enter the thermal-storage component at 860' R and to 
have a flow velocity of 2 feet per second. Prior to the entrance of the mercury the tube 
outer radius wall temperature is axially uniform at .the storage-material fusion tempera- 
ture. As the mercury flows down the tube, heat transfer occurs from the hot tube to the 
cooler fluid. At a given axial location the heat transfer proceeds at a decreasing rate as 
the wall temperature approaches the local mercury bulk temperature. Thus, the heat 
transfer from the storage material to the fluid can be described approximately as a tem- 

observed from a fixed tube axial location, the temperature histories shown in figure 8 
are obtained. The temperatures of the wall on the lithium hydride side and on the mer- 
cury side are presented, as well  as the mercury bulk temperature. These respective 
temperatures are presented at two tube axial locations. At a given axial position, the 
heat-transfer cycle is assumed to begin when the heat-transfer medium reaches that sta- 
tion. 
the heat-transfer cycle time. Because of the likeness to a wave phenomenon, the temper- 
ature histories at different axial positions may be plotted against the cycle time for com- 
parison. The outer radius temperature decreases from the storage-material fusion tem- 
perature to the fluid bulk temperature during the heat-transfer cycle at a given axial 
location. Because of the finite thermal conductivity of the wall  material, there is a 

I 

Axially varying heat-f lux thermal-storage system. - When the thermal-storage sys- 

I 
I rate, a more exact calculation may be needed for design purposes. The more exact solu- 

I 

I perature wave which travels along the tube axis. If the traveling temperature wave is 

I 

~ 

I 

The period of time that heat is transferred at a given axial location is defined as 

I 
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.01 . 1  1 10 100 
Cycle time, k, sec 

Figure 8. - Outer and inner tube wall temperature and mercury bulk temperature as functions of cycle time at two 
tube axial locations. Storage material, lithium hydride; heat-transfer fluid, liquid mercury; tube material, 
gainless steel; tube outer radius, 118 inch; tube wall thickness, 0.030 inch; heat-transfer coefficient, 0.00676 
Btu per square inch per second per "R. 

temperature drop through the wall, as indicated by the difference between the outer and 
inner radius wall temperature. The difference between the respective inner radius wall 
temperatures and the fluid bulk temperature curves is an indication of the instantaneous 
heat-transfer rate for  the assumption of a constant heat-transfer coefficient. The heat- 
transfer rate is a maximum at the beginning of a cycle and then decreases as time ap- 
proaches zero at a given axial location. 

from the solidifying lithium hydride, as shown by the dashed bulk-temperature curve in 
figure 8. The inner radius wall temperature also assumes a higher level at the station 
farther downstream. The instantaneous heat-transfer rate at the downstream axial sta- 
tion decreases from the value at the tube entrance, as indicated by the decreased differ- 
ence between the wall  and bulk temperatures. The outer radius temperature-time plot is 
shown to be the same at the two axial stations considered in figure 8 because the heat- 
transfer coefficient and the dimensionless heat of fusion are assumed to be axially con- 
stant. The effect of changing the bulk temperature in the dimensionless heat of fusion 
would be to raise the outer radius temperature a maximum of 3.8 percent at the down- 
stream location. This effect was ignored in figure 8. However, for some designs the 
effect of varying the bulk temperature on outer radius temperature could be significant 
and therefore should be considered in those cases.  It can be observed from figure 8 that 
the difference between the wall and bulk temperatures, which is an indication of the in- 
stantaneous heat-transfer rate, decreases with time at a given axial location and also de- 
creases at a given cycle time with distance down the tube. 

A s  the mercury flows along the tube, its temperature is raised by the addition of heat 

22 



tTo complete a design study of an axially varying heat-flux storage system, the in- 
stantaneous heat-transfer rate must be integrated over the cycle time at each axial tube 
increment. The integrated heat-transfer rate at a given axial position multiplied by the 
incremental tube-surface a rea  indicates the amount of thermal energy absorbed by the 
heat-transfer fluid at that axial location. 
ber of axial stations until the total thermal energy required during the dark time is ob- 
tained. When this heat balance is made, the axial length of the tube is known. The solidi- 
fication thickness can be obtained from figure 3. The volume and weight of the storage 
material can then be calculated by using the required tube length and solidification thick- 
ness. 

These calculations must be repeated at a num- 

CONCLUDING REMARKS 

This analysis considered a transient -heat-conduction problem with a phase change in 
the axisymmetric conducting medium and heat transfer at the inner radius only. 
dimensional finite -difference solutions for surface temperature and solidification thick- 
ness  were obtained for  a range of cooling time, initial heat-rejection rate, tube diameter, 
and storage-material properties. The storage material was  assumed to be initially at the 
fusion temperature, and the material properties were assumed constant with temperature. 
The nondimensional solutions presented in this  report can be applied to a wide range of 
axisymmetric solidification problems, such as metal casting and ice formation. 

ponent of a direct-energy-conversion system, indicates that (1) utilization of axisymmet- 
r ic  solutions is recommended fo r  low radii o r  long cooling t imes to prevent inefficient 
overdesign of the thermal-energy-storage system; (2) the surface temperature of the 
storage material  is more sensitive to changes in  heat-rejection rate than changes in 
either cooling t ime o r  heat-transfer surface radius; and (3) the solidification thickness is 
more a function of cooling time than of heat-rejection rate o r  surface radius. 

Non- 

Analysis of these general solutions, as applied to the thermal-energy-storage com - 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, September 15, 1966, 
129-01-09-08-22. 
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APPENDIX - SYMBOLS 

P 

F 

C 

f 

h 

k 

L 

2 

q 

R 

r 

T 

24 

specific heat, Btu/(lb)fR) 

dimensionless heat of fusion, 
f/cp(Tf - Tb) 

heat of fusion, Btu/lb 

heat-transfer coefficient, 
Btu/(in. 2)(sec)(oR) 

thermal conductivity, 
Btu/(hr)(ft)(OR) 

dimensionless solidification thick- 
ness, h l  /k 

solidification thickness, in. 

heat -re j ec t ion rat e, Btu/( in. ) ( sec) 

dimensionless radius, hr/k 

radius, in. 

temperature, OR 

2 

t time, sec 

Z axial distance, in. 

a, thermal diffusivity, f t  /hr 

p density, lb/ft3 

7 dimensionless time, h at/k 

cp dimensionless temperature, 

2 

2 2  

(T - Tb)/(Tf - Tb) 

Subscripts: 

b bulk 

c cycle 

f fusion 

i initial 

in inside wall 

o outside wall 
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